DEFINICIÓN…. ¿En qué consiste?
La ingeniería genética consiste en la manipulación del ácido desoxirribonucleico (ADN). En este proceso son muy importantes las llamadas enzimas de restricción producidas por varias especies bacterianas. Las enzimas de restricción son capaces de reconocer una secuencia determinada de la cadena de unidades químicas (bases de nucleótidos) que forman la molécula de ADN, y romperla en dicha localización. Los fragmentos de ADN así obtenidos se pueden unir utilizando otras enzimas llamadas ligasas. Por lo tanto, las enzimas de restricción y las ligasas permiten romper y reunir de nuevo los fragmentos de ADN. También son importantes en la manipulación del ADN los llamados vectores, partes de ADN que se pueden autorreplicar (generar copias de ellos mismos) con independencia del ADN de la célula huésped donde crecen. Estos vectores, generalmente plásmidos o virus, permiten obtener múltiples copias de un fragmento específico de ADN, lo que hace de ellos un recurso útil para producir cantidades suficientes de material con el que trabajar. El proceso de introducción de un fragmento de ADN en un vector se denomina clonación, ya que se producen copias múltiples de un fragmento específico de ADN. Otra forma de obtener muchas copias idénticas de una parte determinada de ADN es la reacción en cadena de la polimerasa. Este método es rápido y evita la preparación de genotecas de ADN (clones de ADN).
HISTORIA
El principio de la enucleación de un ovocito para servir de incubadora a una célula fue ideado por el embriólogo alemán Hans Spemann en vísperas de la segunda guerra mundial. En 1938, propuso lo que él llamó un «experimento fantástico». Se trataba de introducir el núcleo de una célula de embrión de batracio en un ovocito enucleado con el fin de verificar la hipótesis de que cada una de las células de un embrión joven contiene todas las instrucciones para el desarrollo completo de un individuo. En aquella época, todavía no se tenía conocimiento de la doble hélice del DNA. La idea la aplicaron por primera vez con éxito Robert Briggs y Thomas King en 1952, en Filadelfia. Estos investigadores consiguieron disociar, sin estropearlas, las células (blastómeros) del paquete embrionario (en estado de blastocito), tomar los cromosomas de óvulos no fecundados de ranas sin dañarlos demasiado, activarlos como si hubiesen sido fecundados normalmente, y colocar los blastómeros uno a uno en cada óvulo. Obtuvieron renacuajos capaces de nadar. Siguieron otros muchos experimentos con batracios y se consiguieron animales adultos.
La principal aportación técnica del equipo escocés es haber puesto las células embrionarias en estado de hibernación. En cambio, en los mamíferos la operación fue más delicada. Una técnica de transferencia nuclear, puesta a punto en el ratón en 1983, sólo dio unos resultados limitados. El experimento decisivo para comprender de dónde viene Dolly fue obra del embriólogo danés Steen Willadsen, entonces en Cambridge (Gran Bretaña). Utilizando un protocolo ya muy parecido al descrito para Dolly, en 1984 obtuvo carneros adultos en buena salud a partir de embriones de 8 y 16 células colocados en ovocitos no fecundados y enucleados. Uno de los embriones fue congelado durante más de cuatro años.
En los bóvidos, que tienen un mayor interés económico, el debut corrió a cargo del equipo del norteamericano Neil First en 1986. A partir de embriones recogidos vivo por FIV (fecundación in vitro), han nacido ya unos 2.000 terneros gracias a esta técnica, sobre todo en Estados Unidos, aunque también en Francia. Asimismo, se han conseguido éxitos en la cabra. En el conejo, el equipo de Jean-Paul Renard e Yvan Heyman, del INRA, obtuvo en 1990 seis gazapos clonados procedentes de un embrión único.
Hasta 1992, los investigadores tuvieron un índice de fracasos muy alto con los mamíferos. Algunas anomalías cromosómicas inducían la suspensión del desarrollo. Muy pronto, el fenómeno se interpretó como una consecuencia de la dificultad, en el momento de la fusión, de sincronizar los ciclos de la célula donante y de la célula receptora (citoplasma enucleado). En la naturaleza, en el momento de la fecundación, las células se hallan manifiestamente en fase. ¿Cómo conseguirlo en laboratorio? Primero, los científicos buscaron los medios de preactivar químicamente o eléctricamente, antes de la fusión, el ovocito enucleado. Un impulso eléctrico induce la liberación de calcio intracelular, lo mismo que lo haría un espermatozoide en el momento de la fecundación. La preactivación del ovocito permite, sobre todo al núcleo de la célula donante, no perder su envoltura nuclear en el momento de la fusión. Este método de preactivación eléctrica se practica habitualmente desde hace dos años en diversos laboratorios.
La principal aportación técnica del equipo escocés es una segunda mejora, que consiste en hacer que, antes de la operación de fusión, las células embrionarias salgan de su ciclo normal de replicación. Como se ha visto, en el experimento Dolly, las células donantes fueron puestas en hibernación. Sobrevivieron en una solución salina que contenía factor de crecimiento en cantidad exacta para dejarlas vivas. Se hallaban «en el límite de la apoptosis (muerte celular)», dijo Louis-Marie Houdebine, investigador del INRA en contacto con el equipo escocés.
Pero he aquí la gran novedad: los investigadores escoceses se dieron cuenta de que combinando estas dos técnicas —activación del ovocito enucleado y suspensión del ciclo de las células donantes— podían conseguir el nacimiento de animales viables con células muy diferenciadas, y hasta totalmente diferenciadas. La mayor parte de los biólogos pensaban que esto era absolutamente imposible.
Cada célula del organismo lleva todo el material genético del individuo. Durante la diferenciación progresiva que se produce desde las primeras fases del desarrollo embrionario hasta el nacimiento o más allá de él, las células se especializan: sólo una parte de los, aproximadamente, cien mil genes del individuo se expresa en cada célula. El resto de los genes son mudos. Pero ¿qué significa «mudos»? La opinión de que estos genes no están necesariamente perdidos, definitivamente paralizados, en cierta manera muertos, y que sería posible reprogramarlos, ha sido una idea que, durante treinta años —desde comienzos de la década de 1950 hasta comienzos de la de 1980—, alimentaron muchos biólogos, para luego, súbitamente, tacharla de la lista de posibilidades.
Los que experimentaron con éxito en los batracios desde los años 1950, tenían esta idea muy presente. Llevaron a cabo muchos experimentos tomando células de embriones cada vez más desarrollados, e incluso células de animales adultos, para tratar de producir con ellas animales viables. Y lo consiguieron, pero únicamente hasta cierto punto. Células tomadas de renacuajos y del intestino de ranas adultas, colocadas en ovocitos enucleados, produjeron renacuajos. Pero jamás, contrariamente a lo que por un momento pudo creerse, ranas adultas. En 1984, los biólogos publicaron en Science que «la clonación de los mamíferos por transferencia nuclear es imposible»
Los que experimentaron con éxito en los batracios desde los años 1950, tenían esta idea muy presente. Llevaron a cabo muchos experimentos tomando células de embriones cada vez más desarrollados, e incluso células de animales adultos, para tratar de producir con ellas animales viables. Y lo consiguieron, pero únicamente hasta cierto punto. Células tomadas de renacuajos y del intestino de ranas adultas, colocadas en ovocitos enucleados, produjeron renacuajos. Pero jamás, contrariamente a lo que por un momento pudo creerse, ranas adultas. En 1984, los biólogos publicaron en Science que «la clonación de los mamíferos por transferencia nuclear es imposible»
A principios de los años 1980, la comunidad científica se dejó convencer por dos investigadores de renombre, Karl Illmensee, de Ginebra, y Peter Hoppe, de Bar Harbor (Maine). En un artículo publicado en la célebre revista Cell, decían que habían conseguido clonar embriones de ratón a partir de células ya diferenciadas de embriones en estado de blastocisto. Pero tres años más tarde, James Grath y Davor Solter, del Wistar Institute, de Filadelfia, que habían puesto a punto una técnica de clonación aparentemente más perfeccionada, escribían en Science que el experimento de Illmensee no era repetible y llegaban a la conclusión de que «la clonación de mamíferos por transferencia nuclear es biológicamente imposible». lllmensee fue acusado de fraude y, ante las dificultades encontradas con el ratón, la mayor parte de los investigadores que habían trabajado en la clonación de mamíferos —también Grath y Solter— abandonaron sus investigaciones.
La antorcha fue recogida discretamente por un puñado de biólogos que trabajaban en las industrias ganadera y de biotecnologías. Así, en 1986, lan Wilmut supo por una indiscreción que el danés Willamsden, que se había incorporado a Grenada Genetics, de Texas, había conseguido, en 1984, el nacimiento de un cordero a partir de células de blastocisto ya diferenciadas. Pero Willamsden no había publicado este resultado y Wilmut se propuso confirmarlo. En 1989, obtuvo un cordero con células de la masa celular interna de blastocisto. En 1991, Keith Campbell empezó a trabajar con Willmut en el Roslin Institute. Fue él quien tuvo la idea de experimentar con células quiescentes, en fase G0. También aquí intervino el azar, y por partida doble. Wilmut lo explicó al New York Times. En 1993, el equipo de Neal First (Wisconsin) produjo cuatro terneros a partir de células de blastocisto ya diferenciadas. ¿Cómo lo consiguieron? Gracias a una indiscreción, Campbell supo que un técnico del laboratorio había olvidado alimentar con suero las células en cultivo... Él y Wilmut decidieron muy pronto aplicar la receta. El resultado no se hizo esperar: en 1995, hicieron nacer corderos a partir de células diferenciadas de blastocisto. Incluso se permitieron el lujo de pasarlas trece veces en cultivo. En esta fase, las células apenas si tienen nada que ver con las células iniciales, ya que su morfología se ha diferenciado mucho. «Es el resultado esencial», dice Yvan Heyman. Uno de los corderos nacidos de este experimento es hoy un oveja gestante.
No hay comentarios:
Publicar un comentario